25 самых крепких известных материалов

25 самых крепких известных материалов

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз — крепчайший минерал, но он далеко не самый крепкий.

Твёрдость — не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие — способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Алмаз

Алмаз

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 — самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Шёлк паука Дарвина

Шёлк паука Дарвина

Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит

Аэрографит

Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Палладиевое микролегированное стекло

Палладиевое микролегированное стекло

Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Карбид вольфрама

Карбид вольфрама

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния

Карбид кремния

Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Кубический нитрид бора

Кубический нитрид бора

Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Dyneema

Dyneema

Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Титановые сплавы

Титановые сплавы

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные сплавы

Аморфные сплавы

Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Наноцеллюлоза

Наноцеллюлоза

Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Зубы моллюсков

Зубы моллюсков

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Мартенситностареющие стали

Мартенситностареющие стали

Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Осмий

Осмий

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевлар

Кевлар

Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар — это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Spectra

Spectra

Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Графен

Графен

Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Buckypaper

Buckypaper

Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

Металлическая микрорешётка

Металлическая микрорешётка

в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Углеродные нанотрубки

Углеродные нанотрубки

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Аэрографен

Аэрографен

Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Карбин

Карбин

Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

Вюрцит нитрид бора

Вюрцит нитрид бора

место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Лонсдейлит

Лонсдейлит

Метеориты — главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Самые прочные материалы в мире, известные человеку (ТОП-19)

Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.

Спросите любого любителя науки: «какой самый твердый материал?» — и он, несомненно, ответит: «Алмаз».

На протяжении десятилетий люди использовали безупречную твердость алмаза для интенсивной резки. Кроме того, учитывая его способность красиво взаимодействовать со светом, бриллианты являются крайне желанным украшением для женщин. Но действительно ли алмаз — самый твердый материал на Земле?

Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.

Стекловолокно

Самые прочные материалы в мире, известные человеку (ТОП-19)

В 1932 году Рассел Слейтер создал новый прочный материал и использовал его в качестве теплоизоляции для зданий.

Стекловолокно имеет сопоставимые механические свойства, как полимеры и углеродное волокно. Несмотря на то, что стекловолокно не так прочно, как углеродное, оно намного дешевле и менее хрупко при использовании в различных композитах.

Стекловолокно. CC0 Вюрцитный нитрид бора

Стекло из микролегированного палладия

Самые прочные материалы в мире, известные человеку (ТОП-19)

В 2011 году исследователи материалов из Калифорнийского технологического института совместно с лабораторией Беркли разработали новый тип металлического стекла с широким спектром свойств, которое намного прочнее стали.

Как следует из названия, это металлическое стекло изготовлено из палладия — металла с высоким коэффициентом жёсткости. Палладий снижает хрупкость стекла, но увеличивает его прочность.

Титановые сплавы

Самые прочные материалы в мире, известные человеку (ТОП-19)

!!
Такие сплавы чрезвычайно лёгкие и обладают высокой стойкостью к коррозии. Из-за этих свойств сплавы широко используются в кораблестроении.

При всех достоинствах титановых сплавов, они очень дорогие, а потому применение сильно ограничено в гражданском производстве. В основном материал используют в производстве военных судов и ледоколов.

Инновационные сплавы

Существует ряд сплавов, которые появились совсем недавно, но уже успели завоевать признание благодаря своим «сверхкачествам» и активно используются в аэрокосмической сфере и медицине.

Алюминид титана – сплав титана и алюминия, который выдерживает высокие температуры и обладает антикоррозийными свойствами, но при этом он довольно хрупкий и недостаточно пластичный. Тем не менее, он нашел свое применение в производстве специальных защитных покрытий.

Сплав титана с золотом – еще один уникальный материал, который был разработан несколько лет назад группой ученых из университетов США. Основная задача, которая стояла перед учеными, создать материал крепче титана, который можно было бы применять в медицине для производства протезов, совместимых с биотканью. Дело в том, что титановые протезы, несмотря на свою прочность, изнашиваются относительно быстро, их приходится менять каждые 10 лет. А вот сплав титана с золотом оказался вчетверо более прочным, чем те сплавы, что сейчас используются в производстве протезов.

Лонсдейлит

Самые прочные материалы в мире, известные человеку (ТОП-19)

Автор фото: , CC BY 4.0, via Wikimedia Commons

Это природный минерал, образующийся при падении на Землю метеоритов, содержащих графит. Во время удара о поверхность вырабатывается тепло, которое превращает графит в алмаз под высоким давлением. При таком превращении сохраняется гексагональная кристаллическая решётка графита.

Лонсдейлит был назван в честь прославленного кристаллографа, родом из Ирландии, Кэтлина Лонсдейла. В прессе часто сообщалось, что лонсдейлит на 58% твёрже алмаза. Но это оказалось мифом. По шкале Мооса твёрдость минерала составляет 7–8 единиц.

Мартенситностареющая сталь

Самые прочные материалы в мире, известные человеку (ТОП-19)

Это особая разновидность сверхвысокопрочных сталей, прочность которых определяется интерметаллическими соединениями, а не углеродом. Такие стали известны своей прочностью и твёрдостью, не теряя пластичности.

Одним из основных элементов, используемых в мартенситностареющей стали, является 25-процентная массовая доля никеля. Его лучшее соотношение веса и прочности, чем у большинства других сталей, позволяет широко использовать мартенсит в ракетах и обшивках ракет.

Вектран

Самые прочные материалы в мире, известные человеку (ТОП-19)

Производится только японской корпорацией «Kuraray», а представляет собой химически стабильный полиэстер с высокой прочностью и термостойкостью.

В основном используются для закрепления электрических кабелей, канатов, а также в качестве одного из композитных материалов для высококлассных велосипедных шин. Есть и недостаток. Имея высокую прочность, материал легко трескается.

Самые твердые материалы на Земле

Самые твердые материалы на Земле

Самый прочный материал в мире, который тверже алмаза, – полимеризованный фуллерит. Этим материалом можно запросто поцарапать алмаз, с такой легкостью, будто это не драгоценный алмаз, а обычный пластик.

Данный материал представляет собой структурированный кристалл, узлы которого состоят из целых молекул, а не из маленьких атомов.

Лонсдейлит

Лонсдейлит также считается крепким материалом. Это модификация аллотропного углерода, который по твердости близок к алмазу. Данный материал был извлечен из метеоритного кратера. Происхождение материала – графитное.

вюртцитный нитрит бора

Третью позицию в рейтинге твердости прочно занимает вюртцитный нитрит бора. Высокую степень прочности данному материалу обеспечивает кристаллическая структура.

кубонит

Наноструктурированный кубонит, или кингсонгит. Уникальные возможности данного материала обеспечили его частое использование в промышленности.

Нитрит углерода-бора

Нитрит углерода-бора занимает почетную пятую позицию в нашем рейтинге. Главными компонентами данного материала являются атомы бора, а также углерода с азотом.

Кевлар

Самые прочные материалы в мире, известные человеку (ТОП-19)

Впервые был использован в 1970-х годах не в военной технике, а в качестве замены стали в гоночных шинах. Материал получил широкое применение в промышленности, так как он в 5 раз прочнее стали.

Сейчас кевлар широко применяется в производстве велосипедных шин, парусов для гоночных яхт, пуленепробиваемых жилетов. Получил широкое применение в аэрокосмической отрасли.

Мартенситно-стареющая сталь Кристаллы осмия Кевлар

Паучий шёлк

Самые прочные материалы в мире, известные человеку (ТОП-19)

Эти произведения искусства паука выступают одним из самых твёрдых материалов, встречающихся в природе.

Прочность паучьего шёлка зависит от вида и от ряда других внешних факторов, таких как температура и влажность, во время тестирования. Но при подходящих условиях эта нить в 10 раз прочнее кевлара на растяжение.

Это интересно: Если паучья нить была бы длиной 40 000 километров, что равно длине окружности экватора, она бы весила около 500 граммов.

Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.

Хром считается самым прочным металлом

Хром считается самым прочным металлом

Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Карбид кремния

Самые прочные материалы в мире, известные человеку (ТОП-19)

На фото: Минерал муссанит, который является природной разновидностью карбида кремния.

Этот материал составляет основу брони многих боевых танков. Он обладает высокой твердостью и прочностью, а также очень устойчив к радиации и химическим соединениям.

Вюртцитный нитрид бора — твердость до 114 ГПа

Вюрцитная кристаллическая структура обеспечивает высокие показатели твердости данному материалу. При локальных структурных модификациях, во время приложения нагрузки конкретного типа, связи между атомами в решетке вещества перераспределяются. В этот момент качественная твердость материала становится больше на 78 %.

Вюртцитный нитрид бора

Patella vulgata

Самые прочные материалы в мире, известные человеку (ТОП-19)

Этот вид морских улиток, широко известный как «европейский блюдец», в основном встречается в Западной Европе. Их зубы — один из самых прочных материалов, обнаруженных в живой природе.

Исследование 2015 года, опубликованное в журнале «Royal Society Journal», показало, что зуб европейского моллюска может быть прочнее, чем паучий шёлк, который официально является самым прочным природным материалом на Земле.

Самое твердое вещество природного происхождения на нашей планете

Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?

Измерение твердости

В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.

Шкала твердости Мооса

Одна из наиболее часто используемых шкал твердости — шкала твердости Мооса, разработанная немецким минералогом Фридрихом Моосом в девятнадцатом веке. По этой шкале твердость — это мера сопротивления, проявляемого одним материалом при царапании другим материалом. Шкала твердости Мооса варьируется от 0 до 10, где 10 означает самую твердую (наименее подверженную царапинам), а 0 — наименьшую твердость.


Шкала твердости минералов Мооса.

Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!

Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.

Тест твердости по Виккерсу

Один из самых известных тестов для определения твердости с использованием индентора — это тест твердости по Виккерсу. При этом методе испытания на твердость индентор в форме пирамиды прижимается к материалу, твердость которого необходимо оценить. На данный материал в течение определенного времени прилагается определенное усилие. После этого индентора измеряется степень вмятины на материале. Это делается путём измерения площади поверхности вмятины, нанесённой индентором на материал. Здесь снова было установлено, что алмаз является самым твердым природным материалом на Земле.

Что делает бриллиант таким твердым?

В этот момент вы можете спросить себя, что делает бриллиант таким твердым? Ответ кроется в молекулярной структуре этого блестящего элемента. Алмаз — это аллотроп углерода, состоящий из пяти атомов углерода, которые разделяют электроны друг с другом в структуре тетраэдрической решетки. Ковалентная связь между этими атомами углерода чрезвычайно прочна, и ее очень трудно разорвать при комнатной температуре.


Алмаз как тетраэдрическая структура углерода.

Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.

Карбид бора Борид магния-алюминия Нитрид углерода-бора Диборид осмия Диборид рения Вюртцитный нитрид бора Боразон или эльбор, кубонит, кингсонгит, киборит Лонсдейлит Алмаз

Вюрцит борная нанотрубка

Самые прочные материалы в мире, известные человеку (ТОП-19)

Вюрцит нитрит бора — одно из самых редких веществ в мире. Они либо обнаруживаются естественным путём, либо синтезируются вручную. Материал назвали в честь прославленного французского химика Шарля Вюрца.

Различные симуляции показали, что борные нанотрубки из вюрцита могут выдерживать на 18% большее напряжение, чем алмаз. В природе они образуются во время извержений вулканов, под воздействием высоких температур и давления.

фуллерит Вюрцит борная нанотрубка. CC0

Производство кевлара

Вы, вероятно, знаете, что натуральные материалы, такие как шерсть и хлопок, должны быть скручены в волокна, прежде чем превратиться в полезные текстильные изделия. То же самое верно и для искусственных волокон, таких как нейлон, кевлар и номекс.

Существует два основных этапа изготовления кевлара. Первый связан непосредственно с химией – сначала необходимо произвести основной пластик, из которого сделан кевлар (химическое вещество под названием поли-пара-фенилен терефталамид). Непосредственное превращение химического продукта в более полезный, практичный и прочный материал происходит в ходе второго, заключительного этапа производства.

В настоящее время более 80% кевлара в мире производится на заводе Честерфилда в Спруэнсе. Синтетическое волокно наматывается на катушки, как показано здесь, а затем превращается в другие продукты.

С помощью сложного процесса горячий и вязкий раствор поли-пара-фенилен терефталамида пропускается через фильеру (металлический формовщик, немного похожий на сито). В результате получаются длинные, тонкие, прочные и жесткие волокна, которые наматываются на барабаны. Затем волокна разрезаются по длине и сплетаются в жесткий коврик, известный нам как кевлар.

Buckypaper

Самые прочные материалы в мире, известные человеку (ТОП-19)

Уникальный материал был создан американскими и бразильскими учёными. Сделан он из углеродных нанотрубок. Считается, что этот материал примерно в 50 000 раз тоньше, чем средний человеческий волос, и в 500 раз прочнее стали.

Ещё одна интересная характеристика Buckypaper в том, что она может рассеивать тепло, как латунь или сталь, и проводить электричество, как медь или кремний.

Самые прочные материалы из всех, что существуют в мире

Корреспондент информационного агентства «Экспресс-Новости» расскажет о самых прочных материалах из всех, что существуют в мире.

Шелк паука

Шелк пауков вида «Caerostris darwini» считается самым прочным биологическим веществом, которое в 10 раз прочнее кевлара. Было бы достаточно 500 грамм паутины, чтобы вытянуть нить, способную опоясать Землю.

Карбид кремния

Данное соединение кремния с углеродом составляет основу современной танковой брони. В ходе операции «Буря в пустыне» ни один британский танк «Челленджер», покрытый пластинами из карбида кремния, так и не был уничтожен.

Соединение

Нано-кевлар

Самый прочный органический материал, разработанный израильскими учеными, который используется для создания бронежилетов. Существенно прочнее кевлара и пуленепробиваемого стекла.

Алмаз

Самый твердый материал на Земле, наделенный непревзойденной износостойкостью и высочайшим модулем упругости. Также этот драгоценный камень обладает самым низким коэффициентом сжатия.

Твердый материал

Нитрид бора

Соединение бора и азота по многим параметрам превосходит алмаз: например, не растворяется в железе при критически высоких температурах. Широко применяется при производстве высокотемпературного оборудования.

Лонсдейлит

Представляет собой полиморфную модификацию алмаза. В природе лонсдейлит образуется в результате падения метеоритов, содержащих графит. Искусственно получать слишком сложно и дорого. Тверже алмаза, но применения пока нет.

Дайнема

Это волокно из высокомолекулярного полиэтилена считается самым прочным волокном в мире. Материал легче воды, но в 15 раз прочнее стали и без труда останавливает пули.

Палладиевое металлическое стекло

Самое твердое, упругое и прочное стекло, созданное человеком. Ученые утверждают, что это самый долговечный материал на Земле.

Прочное стекло

Buckypaper

Это наноматериал, состоящий из углеродных нанотрубок, каждая из которых в 50 000 раз тоньше человеческого волоса. Buckypaper в 10 раз легче и в 500 раз прочнее стали.

Графен

Двумерная аллотропная модификация углерода, имеющая толщину в один атом. Несмотря на это, такой лист в 200 раз прочнее стали.

Читайте нас первыми — добавьте сайт в любимые источники.

Добавить комментарий

Комментарии

Лазерно-интерферометрическая гравитационно-волновая обсерватория Прочный материал внутри нейтронных звёзд Длинные струнообразные трубки

Зилон (Zylon)

Самые прочные материалы в мире, известные человеку (ТОП-19)

Зилон специально разработан американским независимым институтом «SRI International» как особая разновидность термореактивного жидкокристаллического полиоксазола. Он в 1,6 раза прочнее, чем кевлар.

Zylon используется в ряде областей, где требуется очень высокая прочность и отличная термическая стабильность. Теннисные ракетки, сноуборды — вот некоторые из его известных применений.

Углеродное волокно

Самые прочные материалы в мире, известные человеку (ТОП-19)

Диаметр таких волокон равен 5–10 микрометров и состоят они в основном из атомов углерода. У таких волокон есть ряд преимуществ перед сталью и сплавами.

У этих волокон высокая жёсткость, высокая прочность на разрыв, малый вес и высокая химическая стойкость. Эти свойства сделали углеродное волокно очень популярным в аэрокосмической, военной отраслях. Широко используют их в производстве спортивного снаряжения.

Сталь и ее сплавы

Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.

Так, высокоуглеродистая сталь — это сплав железа с высоким содержанием углерода — получается прочной, относительно дешевой, долговечной, она хорошо поддается обработке. Из недостатков стоит отметить низкую прокаливаемость и низкую теплостойкость, что делает углеродистую сталь уязвимой в агрессивной среде.

Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.

Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.

Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.

Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.

Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.

Волокна из сверхвысокомолекулярного полиэтилена (Dyneema)

Самые прочные материалы в мире, известные человеку (ТОП-19)

Dyneema — это прочное и сверхлёгкое полиэтиленовое волокно, которое в основном используется в качестве композитных пластин для создания бронированных автомобилей. Оно легче воды, а останавливает пули и в 15 лучше стали.

Также используется для изготовления альпинистского снаряжения, рыболовных верёвок, тетивы для лука. Он имеет высокий предел текучести 2,4 ГПа и низкий удельный вес 0,97 г/см³.

Лонсдейлит — твердость до 152 ГПа

Лонсдейлит является аллотропной модификацией углерода и отличается явной схожестью с алмазом. Обнаружен твердый природный материал был в метеоритном кратере, образовавшись из графита – одного из компонентов метеорита, однако рекордной степенью прочности он не обладал.

Лонсдейлит - твердость до 152 ГПа

Учеными было доказано еще в 2009 году, что отсутствие примесей способно обеспечить твердость, превышающую твердость алмаза. Высокие показатели твердости способны обеспечиваться в этом случае, как и в случае с вюртцитным нитридом бора.

Алмаз

Самые прочные материалы в мире, известные человеку (ТОП-19)

Всем читателям thebiggest.ru известно, что алмазы — самый твёрдый материал природы, если использовать для измерения шкалу Мооса. Сделать царапину на алмазе получится, если только использовать другой алмаз.

Такие свойства алмаза человек стал применять в промышленности, в качестве изоляторов и полупроводников. А алмазная крошка просто незаменима при резке высокотвёрдых материалов.

Углеродные нанотрубки

Самые прочные материалы в мире, известные человеку (ТОП-19)

Углеродные нанотрубки, как алмаз и графит, являются производным аллотропов углерода в цилиндрической наноструктуре. Исключительная прочность и меньший вес являются причиной его ценности для электронной промышленности и нанотехнологий.

Кроме того, благодаря своей превосходной теплопроводности, электрическим и механическим свойствам углеродные нанотрубки являются основой многих отраслей промышленности.

Графен

Самые прочные материалы в мире, известные человеку (ТОП-19)

Графен, пожалуй, самый прочный материал, известный людям. В нём один слой углерода, расположенный в треугольной решётке. Является основным структурным элементом древесного угля, графита и углеродных нанотрубок.

Хотя графен производится в небольших количествах уже более века, первое изолированное открытие материала было сделано К. Новоселовым и А. Геймом в 2004 году. Оба за свой вклад в развитие науки получили Нобелевскую премию в области физики.

Источник https://vseonauke.com/1366515183336557514/25-samyh-krepkih-izvestnyh-materialov/

Источник https://metallisten.ru/splavy-i-cvetmet/samyj-krepkij-material.html

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожие статьи

Подвесные потолки

Подвесные потолки — конструкция, возводимая под основным потолком. Основная цель — создания ровной поверхности. Очень часто подвесные потолки выполняют многоуровневыми, комбинируют с натяжными потолками. В таком случае потолок выполняет декоративную роль. В пространстве подвесного потолка можно прокладывать коммуникации: электропроводку, вентиляцию и др. Преимущество подвесных потолков: быстрота монтажа возможность создания многоуровневых конструкций возможность применения различных осветительных […]

Применение и производство листового стекла в строительстве

Применение и производство листового стекла в строительстве Применение листового стекла и его разновидности в строительстве. Применение и производство листового стекла в строительстве Сырье для изготовления стекла Стекло — твердый, аморфный, прозрачный в той или иной области оптического диапазона материал. Получают стекло из минеральных расплавов, содержащих стеклообразующие элементы (оксиды кремния, оксиды бора) и оксиды металлов (литий, […]

Документы по давальческой схеме. Ведение бухучета, ведение бухгалтерского учета, бухгалтерское обслуживание, бухгалтерское сопровождение — бухгалтерский и налоговый учет

Операции с давальческим сырьем в бухгалтерском учете Существует способ, позволяющий получать готовую продукцию без наличия соответствующих мощностей по его производству. Это давальческая схема работы, при которой владелец мощностей обрабатывает сырье, предоставляемое заказчиком. Это удобно и выгодно обеим сторонам сделки. Единственные, кто чаще других предъявляют претензии к такому сотрудничеству, – это налоговые службы. Однако риск налоговых […]